cell invasion
Recently Published Documents


TOTAL DOCUMENTS

4593
(FIVE YEARS 1231)

H-INDEX

131
(FIVE YEARS 22)

2022 ◽  
Vol 12 (5) ◽  
pp. 1040-1045
Author(s):  
Jingfang Zhu ◽  
Jianglin Hu

Preeclampsia (PE) causes serious harm to the health of mothers and infants. PTEN regulates cell biological behaviors, but its role in preeclampsia have not been reported. Real time PCR and Western blot detected PTEN level in the placenta of PE patients and controls. Placental trophoblastderived cell line HTR8 was assigned into NC group, PTEN group and si-PTEN inhibitor group followed by measuring PTEN level, cell proliferation by MTT assay, cell invasion by Transwell, Caspase 3 activity, Beclin-1 and Atg-5 expression as well as PI3K/Akt/HIF-1α/VEGF signaling protein by Western blot. PTEN in PE patients was significantly downregulated (P < 0.05). Transfection of PTEN siRNA significantly down-regulated PTEN, promoted cell proliferation and invasion, reduced Caspase 3 activity, increased Beclin-1 and Atg-5, and PI3K/Akt/HIF-1α/VEGF protein expression (P < 0.05). Transfection of pcDNA 3.0-PTEN up-regulated PTEN and significantly reversed the above changes (P < 0.05). In conclusion, PTEN is reduced in PE and it can regulate pre-eclampsia trophoblast autophagy possibly through PI3K/Akt/HIF-1α/VEGF signaling, suggesting that PTEN can be a potential target for PE therapy.


2022 ◽  
Vol 12 (3) ◽  
pp. 597-601
Author(s):  
Haibin Song ◽  
Heng Zhang ◽  
Lei Li

Deriving from bone marrow, the bone marrow mesenchymal stem cells (BMSCs) possess multipolar chemotaxis, proliferation potential, along with the capability to differentiate into various types of cells. Moreover, the hypoxic stimulation can effectively induce BMSCs differentiation. This study intends to explore the impediment of BMSCs on malignant behaviors of lung cancer stem cells under hypoxia. A co-culture system of BMSCs with A549 cells was established and then assigned into normoxia group, hypoxia group (50, 100, and 200 nmol/L) followed by analysis of cell viability by CCK-8 assay and miR-145 expression by qRT-PCR. In addition, A549 cells were grouped into NC group, miR-145-mimics group, and miR-145-inhibitors group followed by analysis of cell invasion and levels of miR-145 and Oct4. Hypoxia group exhibited a reduced cell viability and higher miR-145 expression (146.01±21.23%) compared to normoxia group (P < 0.05). Transfection of miR-145-mimic significantly upregulated miR-145 and decreased cell invasion (7.49±1.43%) compared with miR-145-inhibitors group or NC group (P < 0.05). Meanwhile, Oct4 level in miR-145-mimics group (0.934±2.98) was significantly decreased (P < 0.05). In conclusion, under hypoxia condition, the co-culture with BMSCs can upregulated miR-145 level, effectively reduce the viability of lung cancer stem cells and restrain proliferation capability.


Cells ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 280
Author(s):  
Laura Bizzozero ◽  
Margherita Pergolizzi ◽  
Davide Pascal ◽  
Elena Maldi ◽  
Giulia Villari ◽  
...  

Many nervous proteins are expressed in cancer cells. In this report, we asked whether the synaptic protein neuroligin 1 (NLGN1) was expressed by prostatic and pancreatic carcinomas; in addition, given the tendency of these tumors to interact with nerves, we asked whether NLGN1 played a role in this process. Through immunohistochemistry on human tissue microarrays, we showed that NLGN1 is expressed by prostatic and pancreatic cancer tissues in discrete stages and tumor districts. Next, we performed in vitro and in vivo assays, demonstrating that NLGN1 promotes cancer cell invasion and migration along nerves. Because of the established role of the neurotrophic factor glial cell line-derived neurotrophic factor (GDNF) in tumor–nerve interactions, we assessed a potential NLGN1–GDNF cooperation. We found that blocking GDNF activity with a specific antibody completely inhibited NLGN1-induced in vitro cancer cell invasion of nerves. Finally, we demonstrated that, in the presence of NLGN1, GDNF markedly activates cofilin, a cytoskeletal regulatory protein, altering filopodia dynamics. In conclusion, our data further prove the existence of a molecular and functional cross-talk between the nervous system and cancer cells. NLGN1 was shown here to function along one of the most represented neurotrophic factors in the nerve microenvironment, possibly opening new therapeutic avenues.


2022 ◽  
Author(s):  
Li-av Segev-Zarko ◽  
Peter D. Dahlberg ◽  
Stella Y. Sun ◽  
Daniël M. Pelt ◽  
James A. Sethian ◽  
...  

Host cell invasion by intracellular, eukaryotic parasites, like the many important species within the phylum Apicomplexa, is a remarkable and active process involving the coordinated action of many apical organelles and other structures. To date, capturing how these various structures interact during invasion has been difficult to observe in detail. Here, we used cryogenic electron tomography to generate images of the apical complex of Toxoplasma gondii tachyzoites under conditions that mimic resting parasites and those primed to invade through addition of a calcium ionophore. Using AI-based image-processing we were able to annotate 48 tomograms to identify and extract densities of the relevant subcellular organelles and accurately analyze features in 3D. We describe an interaction between an anteriorly located apical vesicle and a rhoptry tip that occurs only in the ionophore-stimulated parasites and that is associated with dramatic changes in the vesicle's shape in what appears to be a stalled fusion event. We also present information to support the presumption that this vesicle originates from the well-described vesicles that parallel the intraconoidal microtubules and that the latter two structures are linked by a novel tether. Lastly, we show that a previously described rosette is found associated with more than just the anterior-most apical vesicle, indicating that multiple such vesicles are primed to enable rhoptry secretion.


Author(s):  
Faten AbdelHafez Ahmed ◽  
Christian Klausen ◽  
Hua Zhu ◽  
Peter C K Leung

Abstract Placental insufficiency disorders are major obstetric complications that share a common phenomenon of poor placental trophoblast cell invasion and remodeling of uterine tissues. Myostatin is a transforming growth factor (TGF)-β superfamily member well-known for its important role in muscle growth control. Myostatin is also produced in the placenta and has been shown to regulate some trophoblast functions. However, its roles in placental development are still poorly understood. In this study, we tested the hypothesis that myostatin increases trophoblast cell invasion by upregulating N-cadherin via SMAD2/3-SMAD4 signaling. Primary and immortalized (HTR8/SVneo) trophoblast cells were used as study models. Matrigel-coated transwell invasion assays were used to study the effects of recombinant human myostatin on trophoblast cell invasion. RT-qPCR and Western blot were used to measure myostatin effects on N-cadherin mRNA and protein levels, respectively. Small inhibitor molecules as well as siRNA-mediated knockdown were used to block myostatin receptor and downstream signaling, respectively. Data were analyzed either by unpaired Student T test or one-way ANOVA followed by Newman Keuls test for multiple group comparisons. Myostatin significantly increased primary and HTR8/SVneo trophoblast cell invasion. Moreover, myostatin upregulated N-cadherin mRNA and protein levels in a time dependent manner in both study models. These effects were blocked by inhibition of TGF-β type I receptors as well as siRNA-mediated knockdown of SMAD2/3 combined or common SMAD4. Importantly, myostatin-induced trophoblast cell invasion was abolished by knockdown of N-cadherin, SMAD2/3 or SMAD4. Myostatin may increase human trophoblast cell invasion by upregulating N-cadherin via SMAD2/3-SMAD4 signaling.


2022 ◽  
Vol 23 (2) ◽  
pp. 671
Author(s):  
Elvis Ticiani ◽  
Yong Pu ◽  
Jeremy Gingrich ◽  
Almudena Veiga-Lopez

The placenta supports fetal growth and is vulnerable to exogenous chemical exposures. We have previously demonstrated that exposure to the emerging chemical bisphenol S (BPS) can alter placental endocrine function. Mechanistically, we have demonstrated that BPS interferes with epidermal growth factor receptor (EGFR) signaling, reducing placenta cell fusion. Extravillous trophoblasts (EVTs), a placenta cell type that aids with vascular remodeling, require EGF to invade into the maternal endometrium. We hypothesized that BPS would impair EGF-mediated invasion and proliferation in EVTs. Using human EVTs (HTR-8/SVneo cells), we tested whether BPS could inhibit the EGF response by blocking EGFR activation. We also evaluated functional endpoints of EGFR signaling, including EGF endocytosis, cell invasion and proliferation, and endovascular differentiation. We demonstrated that BPS blocked EGF-induced phosphorylation of EGFR by acting as a competitive antagonist to EGFR. Transwell assay and a three-dimensional microfluidic chip invasion assay revealed that BPS exposure can block EGF-mediated cell invasion. BPS also blocked EGF-mediated proliferation and endovascular differentiation. In conclusion, BPS can prevent EGF-mediated EVT proliferation and invasion through EGFR antagonism. Given the role of EGFR in trophoblast proliferation and differentiation during placental development, our findings suggest that maternal exposure to BPS may contribute to placental dysfunction via EGFR-mediated mechanisms.


2022 ◽  
Vol 2022 ◽  
pp. 1-11
Author(s):  
Lemeng Zhang ◽  
Huifang Yi ◽  
Jianhua Chen ◽  
Haitao Li ◽  
Yongzhong Luo ◽  
...  

Introduction. The biological functions of neutrophil extracellular traps (NETs) in tumorigenesis have drawn an increasing amount of attention. This study explored the relationship between NETs and the inflammatory microenvironment in lung cancer cell invasion and metastasis. Methods. NETs were quantified using myeloperoxidase (MPO–DNA) and immunofluorescence staining. Cytokine levels were measured using ELISA kits. THP-1 and A549 cells were used for in vitro experiments. Transwell and Matrigel assays were used to assess the invasion and migration abilities of the cells. Results. Neutrophil infiltration and NET formation were observed in the lung cancer tissues. Compared with healthy controls, the level of MPO–DNA complexes in lung cancer patients increased remarkably and was positively correlated with peripheral blood neutrophil counts, smoking status, and poor prognosis. Increased circulating NET levels were also positively correlated with the levels of inflammatory cytokines, including IL-1β, IL-6, IL-18, and TNF-α. Neutrophils isolated from patients with lung cancer are more prone to NET release. NETs can promote the invasion and migration ability of THP-1 and A549 cell in coculture systems, while pretreatment with NET inhibitors can effectively reduce NET-induced invasion and metastasis. The ability of NETs to promote invasion and metastasis is partly dependent on macrophages. Conclusion. Taken together, our study demonstrated that NETs facilitate A549 cell invasion and migration in a macrophage-maintained inflammatory microenvironment.


2022 ◽  
Vol 2022 ◽  
pp. 1-15
Author(s):  
Feng Jiang ◽  
Yifang Hu ◽  
Xiaoqin Liu ◽  
Ming Wang ◽  
Chuyan Wu

Background. Recent research has established the existence of epigenetic modulation of the immune response. The possible involvement of RNA-n6-methyladenosine (m6A) alteration in tumor microenvironment (TME) cell invasion, on the other hand, is unknown. Methods. Based on 23 m6A regulators, we examined the alteration patterns of m6A in 629 LUAD tissues and comprehensively connected these modification patterns with TME cell invasion characteristics. The m6A score was calculated, and the m6A modification pattern of a single tumor was quantified using principal component analysis. Then, we further verified the expression of m6A related enzymes and the role hub gene (NOL10) closely related to survival in lung cancer cell lines. Results. Three separate m6A alteration modes have been discovered. TME cell invasion characteristics in the three modes were very similar to the three immunological phenotypes of tumors: immunological rejection, immunological inflammation, and immunological desert. We show that assessing the m6A modification pattern in a single tumor may help predict tumor inflammatory stage, subtype, TME interstitial activity, and prognosis. TME phenotypic inflammation is indicated by a high m6A score, which is characterized by elevated mutation load and immunological activation. The low m6A subtype showed matrix activation and ineffective immune infiltration, indicating that the TME phenotype of noninflammation and immunological rejection had a poor survival probability. Increased neoantigen burden was also linked to a high m6A score. Patients with a higher m6A score saw substantial therapeutic and clinical improvements. And reducing hub gene NOL10 expression substantially inhibited lung cancer cell growth and migration. Conclusions. This research shows that m6A alteration is critical in the creation of TME variety and complexity. The analysis of a single tumor’s m6A alteration pattern will aid in improving our knowledge of TME invasion features and guiding more effective immunotherapy tactics.


2022 ◽  
Vol 12 (1) ◽  
pp. 199-205
Author(s):  
Yanxin Ma ◽  
Dongmei Wang ◽  
Songzhi Luo ◽  
Zhiwei He ◽  
Jiannan Sun

This stud intends to assess whether exosome miR-155-5p derived from human non-small cell lung cancer cells (Hcc827) activates macrophages in lung cancer. Lung cancer Hcc827 cells were assigned into control group and expeirmental group (cultured with macrophages, THP-1 activated by exosome miR-155-5P derived from Hcc827) followed by analysis of macrophage markers inducible nitric oxide synthase (INOS), recombinant human CD163 (CD163), matrix metallopeptidase 9 (MMP9), matrix metallopeptidase 2 (MMP2), and E-cadherin by real-time fluorescent quantitative PCR (RFQ-PCR), IL-10, IL-6 and IL-8 levels by chemiluminescence, cell invasion by Transwell assay and related protein expression by Western blot. miR-155-5p treatment significantly reduced INOS and TNF-β expressions and increased CD163, TNF-α, IL-8, IL-6 and IL-10 expressions along with enhanced cell invasion. In addition, MMP9 and MMP2 expressions in experimental group were significantly increased and E-cdherin was reduced. In conclusion, exosome miR-155-5p derived from lung cancer Hcc827 cells activates macrophages and enhanced lung cancer cell invasion.


Sign in / Sign up

Export Citation Format

Share Document